.. _appendix: Appendix ======== Glossary -------- This section defines terms used by phyddle: .. tabularcolumns:: p{0.1\linewidth}p{0.1\linewidth}p{0.1\linewidth}p{0.7\linewidth} .. csv-table:: :file: ./tables/glossary.csv :delim: | :header-rows: 1 :widths: 20, 80 :align: center :width: 100% :class: longtable .. _setting_summary: Table of Settings ----------------- This table summarizes all settings currently available in phyddle. The `Setting` column is the exact name of the string that appears in the configuration file and command-line argument list. The `Step(s)` identifies all steps that use the setting: [S]imulate, [F]ormat, [T]rain, [E]stimate, and [P]lot. The `Type` column is the Python variable type expected for the setting. The `Description` gives a brief description of what the setting does. Visit :ref:`Overview` to learn more about phyddle settings impact different pipeline analysis steps. .. _table_phyddle_settings: .. tabularcolumns:: p{0.1\linewidth}p{0.1\linewidth}p{0.1\linewidth}p{0.7\linewidth} .. csv-table:: phyddle settings :file: ./tables/phyddle_settings.csv :header-rows: 1 :widths: 10, 10, 10, 70 :delim: | :align: center :width: 100% :class: longtable .. _references: References ---------- EE Goldberg, LT Lancaster, RH Ree. 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol 60:451-465. doi: https://doi.org/10.1093/sysbio/syr046 S Lambert, J Voznica, H Morlon. 2022. Deep learning from phylogenies for diversification analyses. bioRxiv. 2022.09.27.509667. doi: https://doi.org/10.1101/2022.09.27.509667 MJ Landis, A Thompson. 2024. phyddle: software for phylogenetic model exploration with deep learning. bioRxiv 2024.08.06.606717. Y Romano, E Patterson, E Candes. Conformalized quantile regression. Adv NIPS, 32, 2019. doi: https://doi.org/10.1101/2024.08.06.606717 A Thompson, B Liebeskind, EJ Scully, MJ Landis. 2023. Deep learning approaches to viral phylogeography are fast and as robust as likelihood methods to model misspecification. bioRxiv 2023.02.08.527714. doi: https://doi.org/10.1101/2023.02.08.527714 TG Vaughan, AJ Drummond. 2013. A stochastic simulator of birth–death master equations with application to phylodynamics. Mol Biol Evol 30:1480–1493. doi: https://doi.org/10.1093/molbev/mst057 J Voznica, A Zhukova, V Boskova, E Saulnier, F Lemoine, M Moslonka-Lefebvre, O Gascuel. 2022. Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks. Nat Commun 13:3896. doi: https://doi.org/10.1038/s41467-022-31511-0 .. _about: About ----- Thanks for your interest in phyddle. The phyddle project emerged from a phylogenetic deep learning study led by Ammon Thompson (`paper `_). The goal of phyddle is to provide its users with a generalizable pipeline workflow for phylogenetic modeling and deep learning. This hopefully will make it easier for phylogenetic model enthusiasts and developers to explore and apply models that do not have tractable likelihood functions. It's also intended for use by methods developers who want to characterize how deep learning methods perform under different conditions for standard phylogenetic estimation tasks. The phyddle project is developed by `Michael Landis `__ and `Ammon Thompson `__. .. _issues_feedback: Issues & Feedback ----------------- Please use `Issues `__ to report bugs or request features that require modifying phyddle source code. Please contact `Michael Landis `__ to request troubleshooting support using phyddle.